Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 223: 116129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490517

RESUMEN

Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds. However, the majority of patients with obesity presents elevated leptin production, suggesting that in this setting leptin is ineffective in the regulation of energy balance. This resistance to the action of leptin in obesity has led to the development of "leptin sensitizers," which have been tested in preclinical studies. Much research has focused on generating combined treatments that act on multiple levels of the gastrointestinal-brain axis. The gastrointestinal-brain axis secretes a variety of different anorexigenic signals, such as uroguanylin, glucagon-like peptide-1, amylin, or cholecystokinin, which can alleviate the resistance to leptin action. Moreover, alternative mechanism such as pharmacokinetics, proteostasis, the role of specific kinases, chaperones, ER stress and neonatal feeding modifications are also implicated in leptin resistance. This review will cover the current knowledge regarding the interaction of leptin with different endocrine factors from the gastrointestinal-brain axis and other novel mechanisms that improve leptin sensitivity in obesity.


Asunto(s)
Leptina , Obesidad , Humanos , Recién Nacido , Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499327

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) show clear evidence of sexual dimorphism, with a significantly higher incidence in males. Among the determining factors that could explain this sex-based difference, the specific distribution of fat by sex has been suggested as a primary candidate, since obesity is a relevant risk factor. In this context, obesity, considered a low-grade chronic inflammatory pathology and responsible for the promotion of liver disease, could lead to sexual dimorphism in the expression profile of genes related to tumor development. When we compared the expression levels of genes associated with the early stages of carcinogenesis in the liver between male and female diet-induced obesity (DIO) rats, we observed that the expression pattern was similar in obese male and female animals. Interestingly, the SURVIVIN/BIRC5 oncogene showed a higher expression in male DIO rats than in female DIO and lean rats. This trend related to sexual dimorphism was observed in leukocytes from patients with obesity, although the difference was not statistically significant. In conclusion, this study evidenced a similar pattern in the expression of most carcinogenesis-related genes in the liver, except SUVIVIN/BIRC5, which could be a predictive biomarker of liver carcinogenesis predisposition in male patients with obesity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Masculino , Femenino , Ratas , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Caracteres Sexuales , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Carcinogénesis/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Expresión Génica , Dieta Alta en Grasa
3.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362103

RESUMEN

Fibroblast growth factor 21 is a pleiotropic hormone secreted mainly by the liver in response to metabolic and nutritional challenges. Physiologically, fibroblast growth factor 21 plays a key role in mediating the metabolic responses to fasting or starvation and acts as an important regulator of energy homeostasis, glucose and lipid metabolism, and insulin sensitivity, in part by its direct action on the central nervous system. Accordingly, pharmacological recombinant fibroblast growth factor 21 therapies have been shown to counteract obesity and its related metabolic disorders in both rodents and nonhuman primates. In this systematic review, we discuss how fibroblast growth factor 21 regulates metabolism and its interactions with the central nervous system. In addition, we also state our vision for possible therapeutic uses of this hepatic-brain axis.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Resistencia a la Insulina , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiología
4.
Nat Metab ; 4(7): 901-917, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35879461

RESUMEN

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Asunto(s)
Lactancia Materna , Obesidad , Animales , Femenino , Factores de Crecimiento de Fibroblastos , Humanos , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/prevención & control , Ratas
5.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269579

RESUMEN

Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis. However, the MCH control of energy balance is a complex mechanism that involves the interaction of several neuroendocrine systems. The aim of the present work is to describe the current knowledge of the crosstalk of MCH with different endocrine factors. We also provide our view about the possible use of melanin-concentrating hormone receptor antagonists for the treatment of metabolic complications. In light of the data provided here and based on its actions and function, we believe that the MCH system emerges as an important target for the treatment of obesity and its comorbidities.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Sistemas Neurosecretores/metabolismo , Obesidad/metabolismo , Hormonas Hipofisarias/metabolismo , Animales , Metabolismo Energético , Humanos , Área Hipotalámica Lateral/metabolismo , Metabolismo de los Lípidos
6.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572672

RESUMEN

Sirtuins are NAD+ dependent deacetylases that regulate a large number of physiological processes. These enzymes are highly conserved and act as energy sensors to coordinate different metabolic responses in a controlled manner. At present, seven mammalian sirtuins (SIRT 1-7) have been identified, with SIRT1 and SIRT6 shown to exert their metabolic actions in the hypothalamus, both with crucial roles in eliciting responses to dampen metabolic complications associated with obesity. Therefore, our aim is to compile the current understanding on the role of SIRT1 and SIRT6 in the hypothalamus, especially highlighting their actions on the control of energy balance.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Obesidad/metabolismo , Sirtuinas/metabolismo , Animales , Peso Corporal , Ingestión de Alimentos , Humanos , Hipotálamo/metabolismo , Mamíferos
7.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32784967

RESUMEN

Mammalian, or mechanic, target of rapamycin (mTOR) signaling is a crucial factor in the regulation of the energy balance that functions as an energy sensor in the body. The present review explores how the mTOR/S6k intracellular pathway is involved in modulating the production of different signals such as ghrelin and nesfatin-1 in the gastrointestinal tract to regulate food intake and body weight. The role of gastric mTOR signaling in different physiological processes was studied in depth through different genetic models that allow the modulation of mTOR signaling in the stomach and specifically in gastric X/A type cells. It has been described that mTOR signaling in X/A-like gastric cells has a relevant role in the regulation of glucose and lipid homeostasis due to its interaction with different organs such as liver and adipose tissue. These findings highlight possible therapeutic strategies, with the gut-brain axis being one of the most promising targets in the treatment of obesity.


Asunto(s)
Mucosa Gástrica/metabolismo , Glucosa/metabolismo , Glucólisis/fisiología , Homeostasis/fisiología , Hipotálamo/metabolismo , Metabolismo de los Lípidos/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Tejido Adiposo/metabolismo , Animales , Ingestión de Alimentos/fisiología , Ghrelina/metabolismo , Humanos , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...